Calculation Policy 2022

Rationale

The following calculation policy aims to encourage consistent teaching and learning of the four operations throughout KS1 and KS2 in line with the National Curriculum 2014. We aim to link manipulatives and written methods so that the children build on previous teaching and learning, using manipulatives that they recognise. We aim to teach the links between addition and subtraction as well as multiplication and division and encourage our children to make deep connections between these operations. This should involve learning subtraction as the inverse of addition and division as the inverse of multiplication.

Within the policy, we aim to outline the importance of fluency of maths skills through highlighting the areas of partitioning and place value, inverse relationships and increasing complexity in number. We aim to encourage our children to learn key facts and retrieve them with automaticity so to enable children to reduce cognitive load in more complex mathematical situations.

Addition and subtraction

Addition names the whole in terms of the parts and subtraction names a missing part of the whole. This should be referred to when addition and subtraction are taught. Pupils should see this demonstrated in both the bar model and the part-part-whole model as shown below:

Whole	
Part	Part

Children should be taught to add and subtract numbers within 20 as number facts and with automaticity.

Combining two sets (aggregation)

Putting together - two or more amounts or numbers are put together to make a total $7+5=12$

Count one set, then the other set. Combine the sets and count again. Starting at 1.
Counting along the bead bar, count out the 2 sets, then draw them together, count again.
Starting at 1.

Combining two sets (augmentation)

Where one quantity is increased by some amount. Count on from the total of the first set, e.g. put 3 in your head and count on 2. Always start with the largest number.
Counters:

Start with 7, then count on $8,9,10,11,12$

Subtraction

Using subitising to subtract one set from a whole (this links to Mastering Number)

Children should use subitising to recognise quantities. They should then be able to recognise that when subtracting 5 from 12, 2 less would make 10 which would leave 3 more to subtract from 10 , making 7.

Children should be taught to add and subtract numbers within 20 as number facts and with automaticity.

Taking away (separation model)

Where one quantity is taken away from another to calculate what is left.
$7-2=5$
\bigcirc

Multilink towers - to physically take away objects.

Finding the difference (comparison model)
Two quantities are compared to find the difference.
$8-2=6$
Counters:

Children create the two sets with Base 10 equipment and then combine; ones with ones, tens with tens.

Begin counting with the ones in preparation for formal columnar method.

Show partitioning using number beads to support moving on to written calculations.
$00000000000000000 \times 0000000 \times 0000000000000000.000$

At this stage, children can begin to use an informal method to support, record and explain their method.

Show partitioning using number beads to support moving on to written calculations.

At this stage, children can began to use an informal method to support, record and explain their method.

Bridging with larger numbers	
Base 10 equipment： $37+14=51$	Base 10 equipment：
Exchange ones for tens．	Exchange tens for ones．
Count on from the biggest number．	
Move onto pictorial：	Move onto pictorial
Tens Ones	Tens ${ }^{\text {a }}$ Ones
ノーノ	
Expanded Vertical Method（optional）	
Expanded Method	Expanded Method
$\begin{array}{\|l\|l\|l\|} \hline & 2 & 1 \\ +1 & 2 & 2 \\ \hline 1 & 2 & \\ \hline \end{array}$	$\begin{array}{\|l\|l\|l\|} \hline 2 & 4 & 3 \\ \hline \hline 1 & 2 & 2 \\ \hline \end{array}$
3	$\overline{1}$
4 0	2 0
2 000	100
243	121

Decimals

Ensure that children are confident in counting forwards and backwards in decimals - using bead strings to support.

Bead strings:

Each bead represents 0.1 , each different block of colour equal to 1.0
Base 10 equipment:

$\left.\begin{array}{lll}\square-1 & & \square \\ 0.0 & \square & 10.0\end{array}\right]$		

Augmentation model of addition

Starting from the first set total, count on to the end of the second set.
$0.7+0.2=0.9$

Bridging through 1.0

Encouraging connections with number bonds.
$0.7+0.5=1.2$

Subtraction of decimals Take away model
$0.9-0.2=0.7$

Finding the difference (or comparison model):
$0.8-0.2=$

Bridging through 1.0

Encourage efficient partitioning.
$1.2-0.5=1.2-0.2-0.3=$ 0.7

Gradation of difficulty- addition:

1. No exchange.
2. Breaking through ten.
3. Exchanging ones to tens.
4. Exchanging tens to hundreds.
5. Exchanging ones to tens and tens to Hundreds.
6. More than two numbers in calculation, including use of exchange.
7. As 6 but with different number of digits
8. Decimals up to 2 decimal places (same number of decimal places)
9. Add two or more decimals with a range of decimal places.

Gradation of difficultysubtraction:

1. No exchange.
2. Fewer digits in the answer.
3. Exchanging tens for ones.
4. Exchanging hundreds for tens
5. Exchanging hundreds to tens and tens to ones.
6. As 5 but with different number of digits.
7. Decimals up to 2 decimal places (same number of decimal places).
8. Subtract two or more decimals with a range of decimal places.

Multiplication and Division

Division should be taught as the inverse to multiplication. Pupils should see multiplication and division demonstrated in arrays, the bar model and the part-part-whole model as shown below:

Multiplication	Division
Use number lines to demonstrate calculations.	Use number lines and find remainders when using repeated subtraction.
Use number lines to show repeated groups- 3×4	Use of lollipop sticks to form wholes
Abstract number line	
Partition to multiply	Sharing
Begin with Base 10	Begin sharing in ones: Use lines to do this. Begin sharing tens and ones:

Gradation of difficulty (short multiplication)

1. $\mathrm{TO} \times \mathrm{O}$ no exchange
2. TO $x \mathrm{O}$ extra digit in the answer
3. TO $\times \mathrm{O}$ with exchange of ones into tens
4. HTO xO no exchange
5. HTO $\times \mathrm{O}$ with exchange of ones into tens
6. $\mathrm{HTO} \times \mathrm{O}$ with exchange of tens into hundreds
7. HTO $\times \mathrm{O}$ with exchange of ones into tens and tens into hundreds
8. As 4-7 but with greater number digits $x 0$
9. O.t $\times \mathrm{O}$ no exchange
10. O.t with exchange of tenths to ones
11. As 9-10 but with greater number of digits which may include a range of decimal places (hundredths and thousandths) x O
12. Use place value adjustments to multiply a decimal number by an integer.

Gradation of difficulty (short division)

1. $\mathrm{TO} \div \mathrm{O}$ no exchange no remainder
2. $\mathrm{TO} \div \mathrm{O}$ no exchange with remainder
3. TO \div O with exchange no remainder
4. $\mathrm{TO} \div \mathrm{O}$ with exchange, with remainder
5. Zero in the quotient e.g. $816 \div 4=$ 204
6. As $1-5 \mathrm{HTO} \div \mathrm{O}$
7. As 1-5 greater number of digits $\div 0$
8. As 1-5 with a decimal dividend e.g. $7.5 \div 5$ or $0.12 \div 3$
9. Where the divisor is a two digit number
10. Involve fraction and decimal remainders.

Place Value Progression

Recognising Values	Counting in Steps	Comparing and Ordering
Count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number. Identify and represent numbers using objects and pictorial representations including the number line	Count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens	Compare and order numbers from 0 up to 100; use < , > and = signs
Recognise the place value of each digit in a two-digit number (tens, ones). Recognise the place value of each digit in a three-digit number (hundred, tens, ones).	Count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward Count from 0 in multiples of 4, 8,50 and 100;	
Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones).	Count in multiples of 6, 7, 9, 25 and 1000	Round any number to the nearest 10,100 or 1000
Read, write, order and compare numbers to at least 1000000 and determine the value of each digit.	Count forwards or backwards in steps of powers of 10 for any given number up to 1000000	Round any number up to 1 000000 to the nearest 10 , $100,1000,10000$ and 100 000
Read, write, order and compare numbers to at least 10000000 and determine the value of each digit.		Round any whole number to a required degree of accuracy

PV		

